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ABSTRACT: This paper develops robust, regression-based forms of

Newsy's conditional moment tests for models estimated by

quasi-maximum likelihood using a density in the linear exponential

family. A novel feature of these tests is that, in addition to the

original estimation, they require only two linear least squares

regressions for computation, while remaining robust to

distributional misspecif ications other than those being explicitly

tested. Several examples are presented to illustrate the simplicity

and scope of the procedure: a Lagrange multiplier test for

nonlinear regression, the score form of the Hausman test for the

parameters of a conditional mean, and a regression form of the

Davidson-MacKinnon nonnested hypotheses test. All of the tests

assume only that the conditional mean is correctly specified under

the null hypothesis.

Tests for second moment misspecif ication , developed using

White's information matrix testing principle, assume only that the

first two moments Are correctly specified under the null hypothesis.

A special case is a regression—based test for heteroskedasticity in

nonlinear models which relaxes the assumption that the conditional

fourth moment of the errors is constant. Also, a simple

distributional test for the Poisson regression model is presented.

KEYWORDS: Conditional moment tests, robustness, quasi—maximum

likelihood, linear exponential family.





1. INTRODUCTION

Many economic hypotheses can be formulated in terms of the

conditional expectation E(Y |X ) of one set of variables Y given a

set of predetermined variables X. . If the conditional expectation

is known up to a finite number of parameters then hypotheses of

interest can be formulated as restrictions on parameters; classical

inference procedures are then available for formally carrying out

the appropriate tests.

Sometimes economists are interested in comparing two models for

Y , neither of which contains the other as a special case. In this

case the competing economic hypotheses are nonnested in a

statistical sense, and classical testing procedures (e.g. Wald,

Likelihood Ratio and Lagrange Multiplier tests) aj^e no longer

applicable. There ArB, however, several tests available in the

presence of nonnested alternatives. The Cox (1961,1962) approach is

useful in the general maximum likelihood setting. Davidson and

MacKinnon (1981) derive tests for nonnested regression models.

If one is not interested in specific alternatives to the

postulated regression function, but is concerned about

misspecif ication which leads to inconsistent estimates of economic

parameters, then the Hausman (197B) methodology is available.

This paper develops a class of Newey's (1985) conditional

moment (CM) tests that are explicitly designed to detect

misspecif ication of a conditional expectation. The class of tests

considered is broad enough to contain the three types of tests

mentioned above, and allows for time series as well as cross section



observations

.

Broadly speaking, the setup here is encompassed by White

(1985b), who extends Newey's work and develops a framework which

includes conditional moment tests for time series observations as a

special case. However, specializing White's results to a class of

moment restrictions intended to detect (dynamic) misspecif ication of

the regression function, and restricting attention to the class of

quasi-maximum likelihood estimators ( QMLE ' s ) derived from a density

in the linear exponential family ( LEF ) , allows derivation of simple

forms of these tests without additionally assuming that the

conditional density is correct under the null hypothesis. If the

conditional mean is the object of interest, then a test which

further assumes that the distribution is correctly specified will

generally have the wrong asymptotic size for testing the relevant

null hypothesis. Moreover, standard regression forms of conditional

mean tests are inconsistent for testing distributional assumptions

beyond the first moment.

A useful feature of the robust tests derived here is that, in

addition to the QMLE estimation, only two linear least squares

regressions are required for computation. In many cases the

statistics needed for the auxiliary regressions 3.re computable from

the final iteration of the Berndt, Hall, Hall and Hausman (BHHH)

algorithm. One simple consequence of the results here is that

heteroskedasticity—robust Lagrange Multiplier tests for exclusion

restrictions in a dynamic linear model are computable by running a

total of three linear regressions.



Although correctly specifying the regression function is

usually the primary concern of the applied econometrician , it is

also useful to know whether the distribution is correctly specified.

Section 5 of this paper derives a modification of White's (1982)

information matrix test which is designed to detect misspecif ication

of the conditional second moment. An interesting feature of the

test derived here is that it is regression-based while remaining

robust to misspecif ication of other aspects of the distribution:

the null hypothesis states only that the first two conditional

moments are correctly specified. As a special case, it yields a

regression form of the White (19S0a) test for heteroskedasticity for

nonlinear regression which does not require that the errors have a

constant conditional fourth moment. In addition, it gives simple

tests for distributional specification in such interesting cases as

the Poisson regression model

.

The remainder of the paper is organized as follows. Section 2

introduces the general setup and briefly discusses some useful

properties of LEF distributions. Section 3 derives the

computationally simple conditional mean test statistics. Several

examples of conditional mean tests are presented in Section 4.

Section 5 considers a modified information matrix test for

conditional second moments, and Section 6 contains some concluding

remarks.



2. NOTATION AND SETUP

Let l(Y ,Z ): t=l,2,...} be a sequence of observable random

vectors with Y^ 1;;K, Z^ 1;:L. The variables Y^ are the dependent or
t t t

endogenous variables. Interest lies in explaining Y in terms of

the explanatory variables Z and (in a time series context) past

values of Y and Z . Let X = ( Z , Y , Z , , . . , Y , Z ) denote the

predetermined variables (Z may be excluded from X without

alternating the following results). The conditional distribution of

Y given X = x always exists and is denoted D (• |x ). Under weak

conditions on D (-jx ) there exists a conditional density p,(y. |x.)

with respect to a o-finite measure v (dy ) (see Wooldridge (1987)).

Because (by definition) we are not interested in the stochastic

behavior of [Z,]-. the conditional densities p.(v, Ix.) describe the
t t t • t

relevant dynamic behavior of [Y }

.

We choose for p.(y. |x ) a class of conditional densities

Cf . (y .
I
'< . jfii. , Ti. ) J (which may or may not contain p.(y. |x )) which

comprisees of members of the linear exponential family. In

particular

,

(2.1) log f,(y, |x ,m ,Tl.) =

where m is IxK, T; is IxJ, c(-) is Kxi, and a(-) and b(-) are

scalars. The function m (x ) is the. expectation associated with the

density f . ( y. I x , m , n, ) . This entails the restriction

(2.2) m^(x^)V^c(m(x^) ,n^(x^) ) = -V^a ( m^( x^) , -q^ ( x^) )

for all X .



Following Gouneroux, Monfort and Trognon (1984a) (hereafter

GMT (1984a)), the LEF family is parameterized through the

conditional mean function

(2.3) Cm^ds^.e) : e € © c K*^}

and the nuisance parameters

(2.4) Cn^(:<^,n) : n e n <r k"^}.

In the context of Section 3, correct specification means

correct (dynamic) specification of the conditional mean, i.e.

(2.5) E(Y^|X^=x^) = m (K ,e ) for some 9 e e, t=l,2,....

As GMT (1984a) have shown in the case of independent

observations and as White (1985a) has shown in a more general

dynamic setting, the LEF class of densities has the useful property

of consistently estimating the parameters of a correctly specified

conditional expectation despite misspecif ication of other aspects of

the conditional distribution.

The nuisance parameter n may be assigned any value in fl; more

generally, it may be replaced by an estimator tt - n ^ O where [tt >

c n. The "T" subscript on the plim of tt is generally required

because n need not be estimating any "true" parameters (parameters

of interest) even when (2.5) holds. For example, n could be an

estimator from a misspecified parameterized conditional variance

equation in the context of weighted nonlinear least squares, or it

could be an estimator from an alternative model in a nonnested

hypotheses framework. When the data a^re strictly stationary, tt

does not depend on T. In Section 5, when second moment



specification is considered, the plim of tt^ is n where (9 ,n )"^ To o o

indexes the conditional variance of Y given X under the null

hypothesis

.

The DMLE 0^ maKimizes the quasi log-likelihood function

T
L (e;Y,Z) = E ^. (Y ,X ;tt ,e)

t=l

where -f. (y. »:< ;tt,G) is the conditional log likelihood

a(m^(K^,e) ,Ti^(x^,n) ) + y^c (m^( :;^, 0) , t\^( x^, n ) )

(note that b ( y , n . ( x , tt ) ) does not appear since it does not affect

the optimization problem). For simplicity, the argument ;c is

omitted wherever convenient. Letting s^., (6) = V / (e,n ) and
Tt © t I

suppressing the dependence of s on n^ (and hence on T) we have

(2.6) s (0) = V a(m. (e))V m (0) + Y V c (m^ ( 0) ) V^m . ( 0)
t mt ©t tmt ©t

= (Y^ - m^(©) )V^c(m^(0) )V^m^(0)

= U.(©)V c(m,(©))V m (©)
t m t © t

where U^(©) = Y - m (X ,©) is the IxK residual function. The

second equality follows from (2.2). If the mean is correctly

specified then E(Y^|X^) = m^(X^,© ) and the true residuals U, =
t t t t D t.

U.(© ) are defined. In this case, because V^m^(© ) and V c,(m.(© ))to ©to mtto
depend only on X ,

(2.7) E(s^(©^) iX^) = 0.

This shows that [s^ = s^(0 ) : t=l,2,...> is a martingale difference
t t o

sequence with respect to the cr-fields •Ccr(Y ,X ): t=l

Equation (2.7) also establishes Fisher—consistency of the QliLE (when

n is replaced by its pi im , or any fixed value ) and is the basis for



the GMT (1984a) results for dynamic models. It can also be shown

(see GMT (19843)) that if the conditional mean is correctly

specified then

(2.8) E(h^(G^)|X^) = -Vm°'Vc°Vm°

where h (9) = V s (e) and values with a "" superscript are
t y t

evaluated at (© , n^. ) . The conditional variance of the score is
o I

(2.9) V(s°|X^) = 7m°' Vc°Q°(X^)Vc°Vm° '

'

where O ( :; ) = V(Y |X =k ) is the true conditional covariance matrix

of Y. given X.. It can be shown that [V c (m^ ( 0) , n. ( n ) ) ] is the
t t m t t

(zavar±Bn<zB matrix associated with the density f . ( y . |
x ,m ( 9) , ti, ( tt ) ) .

The conditional information equality holds provided

(2.10) 0°(X.) = [V c(m. (X, ,9 ) , n. ( X . , tt°) )
]~^ t=l,2tt m ttottT

and this is the case if the assumed density (evaluated at (9 .n^.))
o ' I

has second moment corresponding to the actual conditional covariance

of Y . In general,

T
A° = -T ^ E E[h^(9^,iT°)] and

T
B° = T E ECs^(9^,n°)'s^(9^,TT°)]

t=l

differ even when the conditional mean is correctly specified, so

that the information equality fails. Under standard conditions,

1/2 '^ <->—
1 o '^— • o

T (9^ - © ) converges in law to N(0,A" "B_A" ")- Because A_ and

B^ can be consistently estimated by positive semi—definite matrices

which require only first derivatives of m (with respect to 9) and c

(with respect to m), robust classical inference is fairly

straiqhtforward for this class of QMLE ' s . The next section derives



regression-based specification tests which allow robust inference

for a wide variety of testing procedures.

3. CONDITIONAL MEAN TESTS

This section focuses on a class of specification tests designed

to detect departures from the hypothesis

(3.1) H^^: E(Y^|X^) = m^(X^,e^), for some e^ e ©, t=l,2,.,..

Let U^O) = Y^ - m^O) be the l:cK residual function, and let U° =

U (0 ) be the "true" residuals under H . Suppose that A (X ) is a

KkQ matrix function of the predetermined variables X . If (3.1)

holds then by the law of iterated expectations (assuming existence

of the appropriate moments),

ECU°A^(X^,e^,n°)Vc^(e^,TT°)] =0, t=l,2,....

Note that A, is allowed to depend on 9 and the limiting value of
t "^ o

the nuisance parameter estimator.

As pointed out by Newey (1985) and Tauchen (1985), (3.2)

suggests basing a test of (3.1) on a quadratic form in the Qxl

vector

_1 T ... ...

^ = T Z ^ (9 TT )

t=l

where 4j^(9,n) = A^ (9, n )
' VCj_ (9, rr ) Uj_ ( G) ' . It is readily seen that the

asymptotic distribution of T '^^-r does not depend on that of tt

.1/2
ln_ - n_ ) IS L

P

suitable regularity conditions, it is straightforward to estiblish

provided T '"(n. - n_ ) is (1), which is typically the case. UnderIT p

that under H .

,

8



(3.2)

where

(3.3)

and

(3.4)

T^/^i^ ^ N(o,r°v°r°')

T _
r° = T E CIo ! -E(A°'Vc°Vm°)-tE(Vm°'Vc°Vm°)} ]
T |._hG! ttt ttt

1° -r~l 1-1 I 1/ I- ° °T » \ -r~l t-ii-/r ° °T/r ° °T\V- = T E '^( t4'^.-s :' ) = T E E:( C^i. ,s ]' [4J ,s ] ) .

t=i t=l

Equation (3.2) can be used as the basis for testing the correct

specification of the conditional mean, with the resulting statistics

being robust against misspecif ication of other aspects of the

conditional distribution of Y given X . All that one needs are

consistent estimators of T^ and V--, and these are available from

^. y\

(3.3), (3.4), U , e^ and tt . However, computation of the resulting

test statistic requires special programming. A method for computing

the test statistics that requires only auxiliary least squares

regressions can substantially reduce the computational burden and

give insight about the directions of misspecif ication for which the

test is inconsistent.

To motivate the general approach, consider a familiar example.

For simplicity, assume that the observations 3.re independent so that

X, = Z^, and consider the linear model

(3.5) E(Y,JX.J = X^^.^ . X^^^p^

where Y is a scalar, X. , is IxP, and X.„ is lxP„. Suppose that the~ tl 1 t.L ^

hypothesis of interest is

(3.6) H^: p =0.
o

The LM approach leads to a test based on the sample covariance of



the residuals estimated under the null and the excluded variables

-1 ^ -
(3.7) '^

I. x;-u .

Suppose that, instead of directly using (3.7), the part of X that

is correlated with X.„ is first removed from X.„. That is, perform
t-i. t^

a multivariate regression of X on X and form the residuals X =

X - X^V'B , t=l,...,T where B is the P x P^ matrix of least

squares coefficients:

T ,-1 T

^1 " [j/ti>^ti] ^i:/i

T
Then, because J] ^ti'-'t

~ "^

'

^^^ statistic in (3.7) is identical to
t=l

that obtained by replacing X with X :

(3.8) 5=1 ^'-^Z X' U = T ^'^i: X' U
t=l t=l

The advantage of working with J^_ expressed in terms of X'^U. is that
T t-i t

it can be expanded as

(3.9) a^ = T"^^^ Z (Xt2 -
^tl^Tl^'*^?

^~^ T

-1/2 o '" '~-

t = l

where

By the first order condition for the OLS estimator cc^ , the third

term on the right hand side of (3.9) is identically zero. Also note

that E^ is defined so that

10



By the weak law of large numbers (WLLN),

1/7 -^

Combined with T (cx_ - ex ) = (1), this shows that the second term
I o p

in (3.9) is o (1) under general conditions if H^ is true. Deriving
p O

the limiting distribution of the LM statistic therefore reduces to

deriving the limiting distribution of

(3.10) T-^'^J/>:t2- >=tl^Tl^'^t-

Under standard regulartiy conditions, if H^ is true, (3.10) is

asymptotically N(0,ZL.) where

(3.11) Z^ = t"^ i: E[(U°)^(X^2-X^^B°^)'(X^2-^'ti^?i^^-

O D 2Note that Z^ is the correct expression whether or not E[(IJ ) |X.3 is

constant. Following White (1980a), a consistent estimator of 2L. is

(3.13) ^ = T~^ C '^?(^t2"^tl^Tl^' ^^t2~^tl^Tl^-

For testing H , this modified LM approach leads to the statistic

(3.14)
^T-n-^T

which is distributed asymptotically as XT under H. in the presence

cf heteroskedasticity of unknown form. From a computational

viewpoint, it is useful to note that (3.14) is computable as TR^,

where the K'~ is the uncentered r—squared from the auxiliary

rearession

11



(3.15) 1 on
^t-^"^!

t=l,...,T.

Interestingly, the regression in (3.15) yields a test statistic

that is numerically equivalent to what would be obtained by applying

White's (19B4, Theorem 4.32) robust form of the LM statistic to the

case of heteroskedasticity . The preceding analysis shows that the

White statistic can be computed entirely from least squares

regressions. i
i

The procedure outlined above can be compared to the standard LM

approach. If the assumption of conditional homoskedastici ty is

maintained and EL. is estimated by

(3.16) ^ = a^ "^"\i:/\2-^l^Tl)'(\2-^Al^'

.I'j'^'-p x^/'v -^ J

where cr.p = T
J^ U*^, then the resulting test statistic 9y^ 9-t- is

t=l

exactly the r-squared form of the LM statistic, which is obtained

from the regression

(3.17) U^ on X^^, X^^ t=l,.,.,T=,

This regression has an uncentered r—squared which is identical to

the uncentered r—squared from the regression

(3. IB) U^ on X^^ - X^^B^j.^ t= l,...,T

verifying that the robust statistic obtained from the regression in

(3.15) is asymptotically equivalent to the statistic obtained from

(3.17) (or (3. IB)) if H is true and Y is conditionally

homoskedastic . In general, as emphasized by White ( 1980a , b, 1984 ) in

several contexts, the reqression statistic based on (3.17) is not

12



asymptotically Xi, under H. if heteroskedastici ty is present. The

statistic based on the regression in (3.15) does have a limiting X^
2

under H in the presence of heteroskedastici ty of unknown form.

Thus the statistic based on (3.15) is preferred.

To extend the above approach for general CM tests, recall the

first order condition for the DMLE 6^:

(3.20) J: VQm^(e^)' V^c^(m^(e^),n^(n^) )(Y^-m^(e^) )
' =0

or, in shorthand,

(3.21) £ vm;vc u; = 0.
t=l

Therefore, the indicator * = T J] A'Vc.U is identical to
t=l

(3.22) T -"j: (Vc:^''A^-Vc^^'-Vm^B^)'Vc^'^^U^

where B^ is the P x Q matrix of regression coefficients from a

matrix regression of Vc'^A^ on Vc^ *"Vm^:
t t t t

(3.23) B^ = { T Vm' Vc. Vm^l~"'-r Vm:Vc' A^.
' ^=1 ^ ^ ^J t=l

t t t

The statistic in (3.22) first purges from Vc "^A its least squares

projection based on Vc ' *"Vm before constructing the indicator.

Note that Vc ~ is an estimator of [V ( Y
|
X )

]~"'"'^*^
if. the second

moment is correctly specified, but not in general. It can be shown

as in the linear least squares case that

(3.24) T *^"j: (Vc:'-A^-Vcy'"Vm^B^)'Vcy-U'

= T-^/4 (Vc^fA°-Vc^fvm°B°)'Vc^fu°' . o ( 1 ) ,~ ot t ot t T ot t p

13



where

B° = \t'^
I
E(Vm°'Vc°Vm°)j-H-^ I E(Vm°'Vc°A°)

and values with "o" superscripts are evaluated at (© ,n ). Under

H , a consistent estimator of the asymptotic covariance matrix of

the right hand side of (3.24) (and therefore of the LHS as well) is

(3.25) J T. (Vc:^'^A^-Vc^'-"Vm^B^)'Vc^'"U^U^Vc^''"(Vc^''A^-Vc^;'Vm^B^)

Equations (3.24) and (3.25) lead to the following theorem.

Theorem 3.1 ; Suppose that the following assumptions hold:

(i) Regularity conditions A.l in the appendix,

(ii) H.: E(Y^IX^) = m^(X^,e ), for some e ©, t=l
U t ' t t t " D O

Then

where ?^ = TR^ and R'^ is the uncentered r—squared from the auxiliary

regression

on U Vc (A - Vm B ) t=l,...,T,

and B is given by (3.23).

In practice. Theorem 3.1 can be applied as follows:

(i) Given the nuisance parameter estimate rr , compute the

:i/2;QMLE e^, the weighted residuals U^ = Vc^ "^U^ , the weighted

regression function Vm = Vc ~Vm , and the weighted indicator

function A, = Vc. ""A. ;
I- t t

14



(ii) Perform a multivariate regression of A on Vm and

keep the residuals, say A ;

(iii) Perform the OLB regression

(3.26) 1 on U^A^ t=l,2,...,T

T* *"> '7

and use TR" as asymptotically X^ under H^, where R" is of course the

uncentered r—squared.

This procedure assumes that the matrix

is positive definite uniformly in T. This condition can fail if the

weighted indicator V c. *'A, contains redundancies (more precisely,
m t t

if V c, "A^ - 7 c^ ^V^m^B^ contains redundancies). In this casemt t mt 6tT
the regression form can still be used, but the degrees of freedom in

the chi—square distribution must be appropriately reduced.

The above procedure gives a simple method for testing

specification of the conditional mean for a broad class of

multivariate models estimated by QtiLE, without imposing the

additional assumption that the conditional variance of Y is

correctly specified under the null hypothesis. Note that if the

second moment of Y^ is correctly specified then the weighting matri)(

appearing above is the negative square root of the conditional

variance of Y^. In general, the weiqht corresponds to the variance

of the assumed distribution, and need not equal the conditional

covariance matrix of Y given X .

The regression appearing in (3.26) is similar to auxiliary

regressions appearing in Newey (1985), White (19S5b), and elsewhere.



but there is an important difference. Consider the regressions

(3.27) 1 on U^Vc^Vm^, U^Vc^A^

(3.28) Vc^ '"U^ on VcJ "'^m^, 7c^ A^

where the multivariate regression in (3.28) (when K > 1) is carried

out by stacking the data and using OLS . If [Vc (0 ,n^)] =

o
V(Y. |X.) then the TR^ from either of these regressions is

*-»

asymptotically distributed as XT under H . If the conditional

second moment of Y is misspecif ied , i.e. CVc (6 ,n )] ?= "^(Y |X ),

then neither of these statistics generally has an asymptotic X^

distribution (although the statistic obtained from (3.27) has a

better chance of having a limiting chi-square distribution), and

they Bre no longer asymptotically equivalent. The statistic derived

from (3.26) has a limiting XZ distribution under H whether or not

the second moment is correctly specified. If the conditional mean

is the object of interest, and the researcher is at all uncertain

about the distributional assumption, then the methodology of Theorem

3.1 is preferred.

The setup of Theorem 3.1 allows consideration of a wide class

of procedures used by applied econometricians . Some examples of how

to choose A in some familiar cases atb given in the following

section

.

16



4. EXAMPLES OF CONDITIONAL MEAN TESTS

The approach taken in Theorem 3.1 was motivated by considering

the LM test for exclusion restrictions in a linear model with

independent observations. This section presents some further

applications of Theorem 3.1. Included are robust LM tests, robust

regression forms of Hausman tests, and a modified Davidson-MacKinnon

test of nonnested hypotheses. '

E:;ample 4 .

1

(LM test in nonlinear regression): For simplicity,

assume that K=l, so that Y is a scalar. Consider estimating

E(Y |X ) by nonlinear least squares. In this case, the nuisance

2parameter n = a" is the variance associated with the assumed LEF

distribution, N ( m ( X , ex, P ) , ct~) . Here oc is P x 1, p is P^ x 1.

Assume that E(Y |X ) = m ( X , oc ,p ). The null hypothesis is

^0= Po = ""

The LM approach leads to a statistic based upon the P^ ;< 1 vector

J^VpMt(X^,;^,0)'G\

where oc^ is the NLLS estimator of ex obtained under the assumption
^*v j^ Xs. J-S

that p = 0, and U^ = Y^ - |4^ ( X^ , oi^, 0) . Let V m^ , V^m^ denote the
o t t t t' T ex t p t

^•^

gradients of u with respect to oc, g evaluated at (cxl1-,0)' . In the

notation of Theorem 3.1, 9 = a, m (9) = n (cx.O), c(m,r\) = m/ri and

Ti(n) = n = a". Also, the indicator A. (a,n) is V u (a,0) (where X
t p t. t

has been suppressed). A test of H which is robust in the presence

of heteroskedasticity can be easily computed using the following

procedure.

17



( i ) Estimate ex by NLLS assuming P = « Compute the residuals

U^ , and the qradients V M^(ot_.0) and 7^ u^ ( o^ - ) .

t ex t T 3 t T
^-. .^.

,

,

(ii) Regress V m on V m and keep the residuals, say 7 m .

p t ex L p "L

'7

(iii) Regress 1 on U.V u and use TR^ from this regression as
t p t

asymptotically Xp. under H .

As a special case of this procedure, consider the LM test for

AR(1) serial correlation in a dynamic model- The null and

alternative hypotheses are

H^i E(Y^|X^) = m^(X^,a^) t=l,2,...

H^: E(Y^|X^) = m^(X^,a^) + p^(y^_^ " '"^_^ ( X^_^ , a^) ) t=2,3,..

The LM procedure leads to a test based upon

T .. ^

^ '^t'^t-l
t=2

where U = Y - m (X ,oc^) and cx.^ is the NLLS estimator obtained

under the assumption of no serial correlation. Theorem (3.1) leads

to the following procedure:

(i) Estimate « by NLLS. Keep U^ , Vm^ = V m^(X^,o-_
o t t attT

(ii) Regress U on Vm and keep the residuals from this

regression, say U .

(iii) Regress 1 on U U and use (T-l)R^ from this

regression as asymptotically XT under H .

Note that this procedure assumes nothing about the conditional

variance of Y given X . Also, X may contain lagged values of Y ,

as well as Z that are not strictly exogenous- This procedure

maintains the spirit of the usual LM procedure, but is robust to
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heteroskedastici ty . The OLS regression in (ii) is the cost to being

robust to heteroskedasticity

.

Extending the above procedure to test for AR(Q) serial

correlation is straightforward. In (ii), regress U , . . . , L) on

"7m and save the residuals U ., and in (iii), regress 1 on U U . ,

-7 2.
j=l,...,Q. (T-O)R^ from this regression is asymptotically XZ under

The above analysis extends to the case that the restrictions

cannot be written as exclusion restrictions. Let 6 be the (P+D)xl
o

vector of parameters in the unconstrained model and suppose that the

restrictions under H can be expressed as

6 = r(a ) for some ex e A
o o o

pwhere A cK andr:A-t-A. LetM(x,a)=m.(x.,r(o:)). Ifoc is in

the interior of A and r is dif ferentiable on int A then a

heteroskedasticity-robust test of H is obtained as follows:

(i) Estimate o: by NLLS and save V u^ ( cx^ ) and the
o at T

residuals U. . Let 6^. = r(cx^) be the constrained estimator of 5 :
t T T o

(ii) Let V(-m, = V^m^(6^) and run the multivariate
o t 6 t T

regression

Vj-m, on V M, t=l,...,T
6 t cx t

and save the residuals, "^^ni^;
6 t

(iii) Run the regression

1 on ^rf"^ t=l T
o t

2 ">

and use TR as asymptotically XI under H .

Note that there is perfect mul ticol 1 ineari ty in the regression

in (iii), so that F of the indicators can be excluded if the

1?



regression package used does not compute R'"'s for regressions

containing perfect mul ticol 1 inearity . Also, note that there is no

need to explicitly compute the gradient of r with respect to <x.

This is to be contrasted with other methods to compute

heteroskedasticity-robust test statistics (e.g. White (19B4, Chapter

4) ).

Example 4.

2

(Hausman test for a conditional mean): Suppose, in the

spirit of the Hausman (1978) methodology, two estimators of the

conditional mean parameters 6 are compared in order to detect
o

misspecif ication of the regression function. Because the DMLE's

considered here yield consistent estimators of the conditional mean,

it is natural to base a test on the difference of two such

estimators. A regression form of the test can be derived which does

not require either estimator to be the efficient DMLE. Also, only

one of the QMLE ' s needs to be computed.

Suppose that G^ is the DMLE from an LEF indexed by (a ,b ,c )

and nuisance parameters n, ( rr ) and a second estimator is to be used

from the LEF (a^,b^,c^) with nuisance parameters •n^(n^). Then a

statistic that is asymptotically equivalent to the Hausman test

which directly compares the two estimators is obtained by taking

(4.1) A (e,n; = [ v c (m ( 9) , n, , ( tt, ) )
j~-'-\7 c^ ( m. ( G) , n. ^( n^ ) ) V m ( 6) .

t m 1 t. tl ± m -i t t^ ^ t* u

In the notation of Theorem 3.1, tt = (tt',tt;L,)' and c(m,n) = c.(m,n, ).

Let TT^ and tt^^ denote the nuisance parameter estimators. The

procedure for carrying out the Hausman test is as follows.
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(i) Given the nuisance parameter estimate n , compute the QMLE
jft, j-v y^ y:

e using the LEF (a ,b ,c ). From 6 , tt and n , compute the

weighted residuals, U = U Vc ~, the weighted regression function

Vm = Vc ' ^Vm , and the weighted indicator function A = "^^i^^^ ^i^ ~

Vc. . ^Vc ^Vm (note that the indicator is just another weighting of

the regression function).

(ii) Perform the multivariate regression of

A, on Vm

and keep the residuals, say A .

(iii) Perform the regression

1 on U A t=l,...,T

and use TR" from this regression as XT under H where P is the

dimension of © .
o

For concreteness, consider a special case. Suppose Y is a

scalar count variable, and the researcher postulates the conditional

mean function

(4.2) H^: E(Y, |X.) = eKp(W.e )u t t to

where W is a IxP subvector of X with a maximum lag length that is

independent of t (for cross section applications, W is a subset of

Z ). Because Y^ is a count variable, it is sensible to use a

Poisson likelihood function to estimate . However, for Y. to
o t

truly have a conditional Poisson distribution, its conditional mean

and conditional variance must be equal ; this is a fairly strong

restriction which can yield misleading results if it is violated.

For now, assume that interest lies only in testing H . If H is
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true, the Poisson QMLE and NLLS both consistently estimate 9 ; this

is the basis for a Hausman test.

For the Poisson model, there are no nuisance parameters. In

the previous notation, a (m) = -m, b (y) = -log(y!) and c (m) = log

m= For NLLS, the nuisance parameter is the variance associated with

the normal density, so Ti^(n^) = a^, a^(m,a^) = -m72a^, b^(y,a^) =

'~> '7* *~^
r?— (y^ + log (2n) ) /cr^, and c^(m,o-t;) = m/cr^. Then

^ .^ ^ ^
^

Vm^(e) = eKp(W^e)W^,
^"^tl^®^

^ e:cp(-W^e), Vc^^(e,o^) = l/CT^

and

VcJ::!'^A. = eKp(3/2W.6^)W. /ctJ^, VcJlf^Vm^ = exp( 1/2W. 9^ ) W

where 9^ is the Poisson QMLE. The estimate of cr~ can be ignored

since it appears only as a scaling factor. Define the residuals U

= Y^ - e-.;p(W^e^) and the weighted residuals U = exp (-1/2W^9^) U^ =

Perform the multivariate regression

e::p(3/2W e )W on e>:p(l/2W 9^)W

and keep the residuals, say A . . Then perform the regression

1 on
^t^t

and use TR^ as Xp. under H .

Again, it is emphasized that this procedure does not assume

that the Poisson distribution (or the normal) is correctly specified

under H . This is in contrast to the usual method used to compute

the Hausman test in this context. Hausman, Ostro and Wise (1984)

(HOW) apply a regression method which is very similar to what would

be obtained from (3. 28) in the Poisson context. The difference is

that they perform the NLLS estimation so that the roles of the two



DMLE ' s Are reversed (it is straightforward to carry out the robust

test when 9 is estimated by NLLS rather than Poisson QMLE). The
o

assumption that the Poisson distribution is correct leads to a

regression test that is slightly different than (3. 28); essentially,

the procedure is to perform an LM test for e;;clusion of

eK'p(l/2W e )W in the NLLS model (also see White (1985b, pp.25-26)).

If the Poisson assumption is incorrect, then this approach leads to

a test with incorrect asymptotic size for testing H . In addition,

the HOW procedure is not consistent for testing the Poisson

distributional specification in the following sense: if the

conditional mean is correct but the Poisson assumption is violated,

the HOW test statistic still has a well-defined limiting

distribution (which is not "X^), rather than tending in probability

to infinity. This result e>:tends to all Hausman tests based on two

QMLE's that are derived from the LEF class of densities. My opinion

is that the Hausman test in the present context should not be viewed

as a general test of distributional misspecif ication . A test which

is useful -far testing distributional assumptions beyond the first

moment is derived in the next section. For the Poisson case, it

leads to comparing the estimated conditional mean and another

estimate of the conditional variance.

^o



Exampl e 4 .

3

(Robust Davidson-MacKinnon nonnested hypotheses test):

Let Y be a random scalar, let X be the predetermined variables as

defined in Section 2. Consider two competing models for E{Y |X ):

H^: E(Y^|X^) = m^(X^,e ), some 9 e 0, t=l,2,...
t t t t o o

H, : E(Y^|X^) = u^(X^,6 ), some 6 e A, t=l,2,
1 t t t t o o

The DM test looks for departures from H^ in the direction of H. (of

course the roles of H and H can be reversed). Assume that model

H^ is estimated by NLLS. Let 0^ denote the NLLS estimator of 9 .'^

T o

When H is true, NLLS on model H will yield an estimator 6^ which

generally converges to 6^ e A (note that 6^ does not have an

interpretation as "true" parameters, but it produces the smallest

mean squared error appro:;imation to E(Y |X ) in the parametric clas;

Cw. (;< ,6): 6 e A}). The estimated "nuisance parameters" in this

setup are n^ = ia'^,6^) where a'l is the estimated "variance" under

"o-

The DM tpst checks for nonzero correlation between the

residuals U = (Y - m (X ,9 )) and the difference in the estimated

regression functions, y^ {X ,6 ) - m (X ,9 ). In the notation of

Theorem 3.2,

and

Vc^(m^(9) ,Ti^(n) ) = 1/ct~

A^(9,n) = m^(6) - m^(9)

If V(Y |X ) = a"^ is maintained, then a regression test is available

from (3.2S): run the regression

U^ on Vm^, M^('5y) - m^(9^)

and use TR~ as asymptotically XT under H . This is the LM form of
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the usual Davidson-MacKinnon test. If V(Y |X ) is not constant

under H , then this approach generally leads to inference with the

wrong asymptotic size. The robust approach is

.^. '-^

(i) Estimate model H by NLLS; save m (X ,9 ), "^q"!*- ^ ^t ' ®T^ '

and the residuals U = Y - m (X ,9 ). Estimate model H. by NLLS

and save m^{X.,6^).

(ii) Regress M^(<5j) - m (0 ) on Vm ( e ) , t=l,2, ,T and

save the residuals, say A .

'^ •• 2 2
(ill) Regress 1 on ^4-^4- ^^^ "^^ ^^'~ ^^ ^ under H .

This approach yields correct asymptotic inference under H in the

presence of arbitrary forms of heteroskedastici ty , and requires only

one additional OLS regression. The OLS regression in step (ii) is

the cost of the robust procedure. This heteroskedasticity-robust

version should be useful in a variety of economic contexts,

particularly when the dependent variable is restricted to be

nonnegative. In such cases, homoskedasticity is usually an

implausible assumption. Rather than compare two separate functional

farms for the dependent variable (which, to perform the test

correctly, requires a distributional assumption), one can compute

two NLLS estimators using the same dependent variable and use the

heteroskedasticity robust form. Regression—based versions of the DM

test for multivariate models estimated by nonlinear SUR which do not

assume V ( Y | X ) is constant Are also available from Theorem 3.1.
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5. TESTING SECOND MOMENT ASSUMPTIONS

The tests developed in Sections 3 and 4 are explicitly designed

to detect misspecif ication of the conditional mean without making

the additional assumption that the distribution used in estimation

is correctly specified. In Section 3, two regression forms of the

conditional moment tests were presented (see (3.27) and (3.28)) that

could be guaranteed to have a limiting 'yC distribution only if the

second moment of the assumed distribution matches the true

conditional second moment of Y . More precisely, the regression

tests in (3.27) and (3.28) effectively take the null hypothesis to

be

H^: E(Y^|X^) = m^(X^,©^) and V(Y^|X^) = [ Vc^ ( m^ ( 9^ ) , n^ ( n^ ) )

]~^

for some 9 <= ©, some n en.
o o

The nuisance parameters n &rG no longer indexed by T because
o

they are now "true" parameters which, along with 9 , index the

conditional second moment of Y . For the validity of the regression

tests in (3.27) and (3.28), the correct specification of the second

.Tioment is usually needed to consistently estimate the covariance

matri;-: which appears in the conditional moment test statistics.

Because violation of the distributional assumption does not lead to

inconsistent estimates of a correctly specified mean, the CM tests

for the conditional mean based on (3.27) or (3.28) are inconsistent

for the alternative

.iO



H' : E(Y^|X^) = m.(X.,G ) for some G e but V(Y^|X^) 7^

1 tttto o tt.

[Vc.(m.(e ) ,-n.(n) )]"' for all n e H,
t tot

Because the Hausman test is a CM test, it is also inconsistent for

testing distributional aspects beyond the first moment. A more

powerful test is needed for detecting departures from the second

moment assumption.

Such a test is obtained by applying White's (19B2) information

matrix (IM) testing principle. Actually, the focus here is on

second moments, so that the test derived below is closer to the

White (1980a) test for heteroskedasticity extended to nonlinear

regression models. The difference is that the tests derived below

are computable from linear regressions while taking only H' as the

null hypothesis (i.e. there is no need to add auxiliary assumptions

under the null in order to obtain a simple regression form of the

test)

.

In the spirit of White (1980a), a test is based on two

consistent estimators of the asymptotic covariance matrix of G^

under the hypothesis that the first two conditional moments are

correctly specified. Thus, interest lies in second moment

misspecif ication which invalidates the use of the usual standard

errors calculated for the QMLE G^ (although the approach easily

generalizes to more general second moment tests). Let rr^ be the

nuisance parameter estimator, and let all other quantities be

defined as before.
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Consider the difference

(5.1) t""*^ E Vm^Vc^U^U^Vc Vm - t"""" J3 Vm'Vc Vni

where all quantities are evaluated at (e^.TT^) (recall that U. and

7m. do not depend on n^). If the first two conditional moments of

Y. given X are correctly specified, then the difference in (5.1)

tends to zero in probability as T - oo and the standard errors for ©-j-

which Are computed under the information matrix equality will be

asymptotically valid. If either the conditional mean or variance is

misspecified then (5.1) will typically not converge to zero

(although there are directions of misspecif ication for which this

statistic will still tend to zero). Thus, a test of correctness of

the first two moments can be based on a suitably standardized

version of (5.1). Taking the vec of the t th difference in (5.1)

yields

^. .'^ J^. .-N J^. J^ JT; y-. /%.

(5.2) vec(Vm^Vc^U^U^7c Vm - Vm' 7c Vm )
' =

y^ x>.

vec(Li^U^ - Vc^-'")' [(Vc^Vm^) ® (Vc^Vm^)]

where the relationship vec(ABC) = (C® A)vec(B) for conformable

matrices has been used. Under H'. , E(U°'U°|X^) = [Vc^(e ,n )]"'.
O t t t too

In general, a statistic based on (5.2) will have a limiting

distribution that depends on the limiting distribution of (G^,t;^).

Because it_ may come from a variety of sources, this dependence makes

general derivation of the limiting distribution of the IM statistic

tedious. More importantly, the resulting test statistic is

computationally burdensome. A statistic which does not depend on

2B



the limiting distribution of (© ,n ) would be particularly

convenient in this case.

To derive such a statistic, the approach used in Section 3 is

—1 o o
modified. Note that CVc,(e ,n )] plays the same role for U.'U.

that m (e ) plays for Y . Define

X.(e,TT) = vec C7 c. (m. (e),Ti. (n))]""'-'
t " m t t t

A^(e,n) = C(Vc^(©,n)Vm^(e,TT) ) » ( Vc^(©, n) '7m^( 0, tt ) ) ] .

In Section 3, a statistic which did not depend on the limiting

distribution of the parameter estimates was obtained by first

removing the influence of the gradient of the conditional mean on

the indicator. Things are more complicated here because U ' L) is no

longer observed, but only estimated. Nevertheless, because the

gradient of U. (e)'LJ. (G) evaluated at Q is uncorrelated with any
t t o

function of X , the same strategy works.

If jr. {9,n) has a zero derivative with respect to a certain

parameter then the estimator of this parameter has no effect

asymptotically on the usual IM statistic. In what follows, 7^; (G.rr)

contains only the nonzero, nonredundant elements of the gradient of

^j_ with respect to both © and tt. Define

, T . ,. . . T
r_ =

k=i J t=i

and let (p (e,TT,r) denote the Q nonredundant elements of

veccu^(e)'u^(e) - K^(e,TT):' EA^(e,n) - vx^(©,TT)r].
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Theorem 5.1 : Suppose that the following conditions hold;

(i) Regularity conditions B.l in the appendix;

(ii) For some e ©, n e fl, and t=l,2,....,
o o

and

E(Y^IX^) = m^(X^,e^)

V(Y^IX^) = [V^c^(m^(X^,e^),n^(X^,TT^))] ^
=

Then

2where ?^ is TR from the regression

on ip , t=l , . . . ,T

j^ y\ y\

and (p = «p^(e , n^,r ).

The method for applying Theorem 5.1 is as follows:

/^ .'^

(i) Given tt , compute the QMLE G , U , V^ , and A as

defined above;

(ii) Perform the multivariate regression of A. on Vif and

save the residuals, say A ;

(iii) Perform the OLS regression

1 on <p t=l , - = - , T

and use TR^ as XII <, where Kp is IxQ and contains non redundant

elements of vec (U'U - Vc^ )
' A .

t t e t

Theorem 5.1 gives a simple method for testing correct

specification of the conditional second moment. Only least squares

regressions are needed to compute the statistic. Calculation of Vx.

is typically straightforward. The parameters n need not be
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estimated by an efficient procedure, so that Theorem 5.1 is

applicable to the negative binomial generalization of the Poisson

regression model as developed by GMT (1984b). As is the case with

the usual IM test, one may exclude indicators and appropriately

reduce the degrees of freedom in the yT distribution.

Example 5.1 ; It is interesting to apply Theorem 5.1 to a univariate

nonlinear model that has been estimated by NLLB. In this case,

^^.(^?^) = TT = cr*" SO that the only nonzero element of 7>f. is 1- The

indicator A is Vm ( X ,9 ) ' 7m ( X , ) ]/a^ where a is the

-1 '^2
estimator T E U . Theorem 5.1 leads to the regression

t=l

(5.1) 1 on (Uj - cr:p)(?^ - ^^)

where C. is a vector of nonconstant, nonredundant elements of Vm' Vm

- -1 "•

and t^^ = T E *>•(-- This procedure is asymptotically equivalent to
t=l

the regression form of the White test for heteroskedasticity for

nonlinear regression models under the additional assumption that

Er(U°)^|X^] is constant (see Domowitz and White (1982)).

Interestingly, the slight modification in (5.1) (which is

essentially the demeaning of the indicators C ) yields an

asymptotically yT distributed statistic without the additional

assumption of constant fourth moment for U . In the case of a

linear time series model, the demeaning of the indicators yields a

statistic which is asymptotically equivalent to Hsieh's (1983)

robust form of the White test, but the above statistic is

significantly easier to compute. Rarely would we care to assume

anything about the fourth moment of Y , so that the robust
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regression form in (5.1) seems to be a useful modification.

Example 5.2 : Consider the Poisson regression model where, for a

scalar count variable Y , it is assumed that Y conditional on X

has a Poisson distribution with mean E(Y |X ) = e;<p(W ). As noted

in Section 3, the Hausman test is inconsistent against alternatives

for which the mean is correctly specified but the distribution is

otherwise misspec'if ied . A reasonable approach is to compare the

conditional mean and another estimate of the conditional variance.

In this case there are no nuisance parameters and Vc (m (9)) =

e:<p(-W.e)= Therefore, Vx^O) = ejcp(W^e)W^ and Vc^(e)Vm^(e) = W..
t t tt tt t

Let < be a row vector of nonredundant elements of W'W , let G^ be

the Poisson DMLE and let L) = Y -e;:p(W G^). The testing procedure

is

(i) Perform the multivariate regression of C on

exp(W 9 )W , t=l,...,T and keep the residuals, say ?..

(ii) Run the OLS regression

1 on (i^t " ^-'P(W^9^) )<^

and use TR*" as asymptotically Yi under H where Q is the dimension

of C .

't

In Examples 5.1 and 5.2, the test statistics essentially check

whether the information equality holds for the vector of parameters

9 , and is not consistent against alternatives for which this
o

'

^

equality holds but the distribution is otherwise misspecif ied . If

in Example 5.1 the regression function is correctly specified and

the conditional variance of Y given X is constant, then the



procedure outlined above can not be expected to detect other

departures from conditional normality, such as skewness or kurtosis.

In E>cample 5.2, the equality of the conditional mean and conditional

variance is being checked. Other departures from the Poisson

distribution might not be detected (nor would they be very

interesting )

.

Before ending this section, it is useful to note that Theorem

5.1 is applicable to much more general specification tests for

conditional variances, such as the Lagrange Multiplier tests in

Breusch and Pagan (1979) and the ARCH tests of Engle (1982). One

merely replaces the indicator

[(Vc^(e,n)7m^(e,n) ) ®( Vc^O, n) Vm^ (6, rr ) )]

by whatever is desired, as long as the indicator depends only on the

predetermined variables X and parameters (6,tt). The result is

tests for heteroskedasticity which Are robust to departures from the

distributional assumption.

EXAMPLE 5.3: Let Y be a scalar, and suppose the null hypothesis is

H^: E(Y^|X^) = m^(X^;e^), some e^ e ©

V ( Y . I X . ) = cr"^ some cr'^ > t=l ,2
t • r o o

Let ©_ be the NLLS estimator of © , and let all be the usual

estimator of cr" ba = ed on the sum of sauared residuals. The LM test
o ^

for Qth order ARCH is based upon

Z (U - <:j~)U~:_ j=l,...,Q.
t=Q+l

I t: J

The usual LM statistic is (T-D)R*" from the regression

(5.2) uj on 1, ur
,

uj ^ t=Q+l T.



Because X . O, tt ) = n = a*" , the statistic that is derived from Theorem

5-1 is ( T-Q )R*' from the regression

(5.3) 1 on (U^-ct:j:) (U^_j^-ct:j:) , ..., (U^-arf) (U^_l_j-cj^) t=Q+l,...T.

The regression based form in (5.3) is robust to departures from the

conditional normality assumption, and from any other auxiliary

assumptions, such as constant conditional fourth moment for U. This

is to be contrasted with the test derived from (5.2). '

6. CONCLUSIONS

This paper has developed a general class of specification tests

for dynamic multivariate models which impose under H only the

hypotheses being tested (correctness of the conditional mean or

correctness of the conditional mean and conditional variance) . The

computationally simple methods proposed here should remove some of

the barriers to using robust test statistics in practice.

The general approach used here has several other applications.
""' — j\

In particular, the QMLE ©^ can be replaced by any VT—consistent

estimator. This is useful in situations where the conditional mean

parameters are estimated using a method different than QMLE. An

example is a log-linear regression model: let © = {^,cj^), and

(i.l) loa Y, IX, ^ N(X,B ,o-'),
t t too'

so that

(6.2) E(Y^|X^) = eKp(a^/2 + X^P^).

It is easy to estimate Q by MLE in this case since (6.1) suggests

OLS of log Y on X . Because we are ultimately interested E(Y |X ) ,

QMLE in this example corresponds to NLLS of Y on exp(X x) (provided



that X contains a one). When comparing the log-linear

specification to a linear— linear model E(Y |X ) = X 6 , it is useful

to use e>;pression (6.2). The robust Davidson-MacKinnon test derived

in Section 4 is immediately applicable to the functions e:<p(cr!j:/2 +

X.P-j.) and X.6^ (no matter which model is taken to be the null),

where all estimates are obtainable from DLS regressions.

The approach used in this paper also seems to generalise to

models that jointly parameterize the conditional mean and variance

and are estimated by QMLE using a conditional normality assumption.

The multivariate ARCH-in-mean models of the type used by Bollerslev,

Engle and Wooldridge (1988) fall into this class. Having robust

Lagrange Multiplier tests for these models would allow specification

testing of the conditional mean and variance without taking the

normality assumption seriously. This research is currently

progress.



MATHEMATICAL APPENDIX

For convenience, I include a lemma which is used repeatedly in

the proofs of Theorems 3.1 and 5.1.

Lemma A. 1 ; Assume that the sequence of random functions CQ-j- ( W^, 9) :

e e 9, T=l,2,...}, where Q^(W^,-) is continuous on © and © is a

pcompact subset of K , and the sequence of nonrandom functions

xQ^(©): © e ©, T=l,2,...}, satisfy the following conditions:

(i) sup |Q (W ,©) - Q (©)]| 5 0;
©€©

(ii) {0(6): e e ©, T=l,2,...} is continuous on ©

uniformly in T.

Let ©^ be a sequence of random vectors such that ©^ - ©_ - O

where C©j} <= ©- Then

D^(W^,©^) - Qy(e°) 5 0.

Proof: see Wooldridge (1986, Lemma A.l, p.229)„

A definition simplifies the statement of the conditions.

Definition A.l : A sequence of random functions -[q.CY ,X ,©): © e ©,

t=1.2, ...}, where q.(Y,X,,-) is continuous on © and © is a compact

psubset of K , is said to satisfy the Uniform liJeak Law of Large

Numbers ( UWLLN ) and Uniform Continuity ( UC ) conditions provided that

T
(i) sup |T 2 q^(Y ,X ,©) - E[q (Y ,X ,©)31 5

©€© t=l

and

-1
"^

(ii) [T
J2 E[q (Y ,X ,©)]: © e ©, T=l,2,...} is

t=l

continuous on © uniformly in T.
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In the statement of the conditions, the dependence of functions

on the predetermined variables X is frequently suppressed for

notational convenience. Also, c (©,n) is used as a shorthand for

c (m (9) ,-n. (n) ) . Similarly for a (e,TT). If a gradient operator is

not subscripted, the derivative is with respect to all parametric

arguments of the function (either 6 or (e,n)). If a(9) is a IxL

vector of the Pxl vector 9 then, by convention, V a(9) is the LxP

matrix '7-[a(9)']. If A(9) is a Q x L matrix function of the Pxl

vector 9, the matrix V AO) is the QL x P matrix defined as

VqA(9)' =cv^A^(e)': ... iv^a^o)']

where A. (9) is the jth row of A (9) and V^A.(9) is the L x P

gradient of A. (9) as defined above. For simplicity, define

'7^c(m,Ti) = V [7 c(m,Ta)']
m " mm

V-^ c(m,Ti) = V C7 c(m,Ti)' ]
mT\ Ti m

V;m^(9) H V^[V^m^(9)']

Note that V^cCm,^) is K*" x K, V~ c(m,n) is K^ x J, and V^m. (©) is
m mT\ 9 t

KP X P.

Conditions A .

1

:

(i) © and fl are compact with nonempty interior;

I -n- n -4-1
)(ii) [m (x ,9) : x e K^ ^' "

, © e ©} is a sequence of

real-valued functions such that m^(-,9) is Borel measurable for each

9 e © and m^(x^,-) is twice continuously dif f erentiable on the

interior of © for all x , t=l,2,...;

(iii) The functions a.zJ'^-.J^ * ER and c:>L;-:^ - K ^ are such that

:7



(a) a is continuous on Jh<J^ and for each t\ ^ -^ ^ a( ;t\) is

continuously dif feren tiable on the interior of J^;

(b) c is twice continuously dif ferentiable on the interior

of J^<J{\

(c) For all (m,Tl) e interior ./Hk^, mV c(m,Ti) = -^7 a(m,Ti);
m m

(iv) T-''*-(TT_ - n°) = (1);
-

' ' P

(V) (a) {a^(e,n) + m^ ( e^) c^(©, n ) } and {U°c^(e,TT)}

satisfy the WULLN and UC conditions;

(c) O is the identifiably unique maximizer (see Bates and

White (1985)) of
_. T. T

T ^
J: E[a (e,n°) + m^ ( G^)c^ ( 9, -n" ) ] ;

t=l

(vi) e is in the interior of ©, and {n^} is in the interior of
o T

n uniformly in T;

(vii) (a) •C^Qm^(e)'V^c^(e,TT)VQm^(e)},

[V m (e)'V^c,(e.TT)'[T, » U. (G)' ]V m. (G)},
© t m t v.. t B t

•CV^m, (8)' CI., ® V c, (e,n)U. (6)' ]}, and

^^TT-^t^")'Wt^®'"^'"K * u^(^)':iVt(^^^

satisfy the WULLN and UC conditions.
T

(b) A° = CT ^ ^ EC^^m^O )'V c^O , n° ) V m ( 9 )]> is 0(1)
I

+- —

1

©to mtol©to
and uniformly positive definite;

(c) t"^''^ j: "^^""'^vG )'7 c^(G ,rT°)U°' = 0^(1):
,r^, Gto mtoTt p

(viii) (a) {V^m. (G)' V^c. (G,TT)' [I,, ® U^(G)' ]V_A, (G,n)},ot mt K t ft
[V -n, (TT)' V^ c. (G,n)[I^, ® U. (9)' :V A, (G,TT)},

n t mn r K t G t

[7 A (©,n)' [I^, ® V c. (G,n)U, (G)' ]}, and
© t K m t t

[V A. (©,TT)' [T .. ® V c. (9,TT)U, (G)' ]}
n t " K m t " t

>8



satisfy the WULLN and UC conditions.

(i;0 (a)

is 0(1) and uniformly positive definite;

CA^(e,n)'V c^(e,n)U^(e)'U^(e)V c^(e,n)V^m^(e)}, and
t mt" t t mt et

{V^m. (e)'V c. (e.n)U. (G)'U^(G)V c . ( G, tt ) V^m . ( 9) }9t mt t t mt" St
satisfy the UWLLN and UC conditions.

Proof of Theorem 3.1 ; The major task of the proof is establishing

the validity of equation (3.24). For notational simplicity, we

explicitly consider the case K = 1; the case K > 1 is similar but

notational ly cumbersome.

By a weak consistency analog of Bates and White ( 1985 , Theorem

2.2), assumptions (i), (ii), (iii), (iv) and (v) imply that G^ 5 G .

Consistency of G and (vi) imply that

T
(a.l) fT E '^J^l'^ c\u^ = ol-»l asT-co.

L ^^^ G t m t t
J

y\ .-X

EKpandinq the score S_(©_,n_) in a mean value expansion about G
! ! ! Q

(Jennrich (1969, Lemma 3)) yields

j^ -^

(a. 2) S (GT.,n_) = S_ ( © ,n_) + H-r(G^ - G )
I I T T o ' T T T Q

where H^ is the hessian with respect to G with rows evaluating at

mean values on the line segment connecting G^ and G . For any G *To
int ©,



h. (e,n) = -Vm. (e)'7 c. (e,n)Vfn. (e)
t t m t t

+ U^(e){Vm^(G)'7"'c^(e,n)7m^(e) + V c^ ( G, n ) V"m . ( 9) > .

Because 6^. 5 9 , n^. - n^. 5 0, and all components of h,(©,TT)
T o ' T I t:

satisfy the UWLLN and DC conditions by (vii.a), it follows that

H^/T + A° 5 0.

By (vii.b). A— is 0(1) and uniformly p.d. Therefore, H-p is

nonsingular with probability approaching one, so by Lemma A»l,

(H /T)~ + A°~ 5 0. Combined with (a.l) and (a. 2) this implies

that

1/2 '^ o-l -1/'^ '^

(a. 3) T-^'^(e^ - e ) = A° T -^'^S^O ,tt^) + o (1).To T T o T p

Next, note that by a mean value expansion about tt^,

—1/2 ^ —\/'^ n •• 1/"^ '^ D
T ^ S_(e ,TT^) = T ^^-S^(e ,TT°) + [V S^/T] I'^'^i-n^ - "x) "*" ° (^^loT ToT TiT T I p

where V S_ has rows evaluated at (9 , n^ ) and n^ are mean values
n T o T T

between tt_ and n_. By (vii.a), V 5^(9 ,n) satisfies the UWWLN and
T T • n t o

UC conditions so that by (iv) and Lemma A.l. [V S^/T] -
rr 1

EC'7^S^(9^,iT°)/T] = o (1). But, under H^, EC V^s^ ( 9^, tt° ) |
X^] = 0, so

that V S^/T = o (1). Combined with (iv) this shows that
rr T p

(a. 4) T~^^-S_(9 ,n^) = T"^^-S^(9 ,n°) + o (1).ToT T n T p

Substituting (a. 4) into (,3..Z) gives the standard asymptotic

eguivalence for the QMLE

l^'^'re^ - 9 ) = A?-V^/-S° ^ o (1);ToT T p

in particular, T"*" ^(9^. - 9 ) = (1) by (vii.c).
I o p

Next, consider equation (3.24). First, (vii:b) guarantees that

B exists for sufficiently large T and is 0(1). Rewriting (3.24)

gives
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-1/2 • l/2'^ '1/2 '" o "•1/2-'-
(a.6)

&-r
= T j: (V c ^A - V c^' 'V m B°) ' V c / U '

T ^. —t^^t t mt 6tT mt t

1/2 ^ o -1 ^ ^ ^

By (a.l), the second term on the right hand side of (a. 6) is zero

with probability approaching one. Taking a mean value expansion

about (6 .n^.) of the first term on the right hand side of (a. 6) and
o I

applying Lemma A.l, (vii), and (viii) yields

<a.7, S, = T-^'2j^,A° - V^»°B°)-V^C°U°

I.— J. •'

- [t-I E EV A°'V cX^V-Cn^ - n )

L +.= 1 rrtmttj T o

+ T ^ [A. '7^ C.7 Ta.U.] T (TT_ - TT )

L t-1 tmntTTttJ T o

o>

+ o (1)
p

Under H , E[U |X ] = 0, so that the first term in each of lines two.

three, five, and six of (a. 7) has zero expectation by the law of

iterated expectations. Because each of these terms satisfies the

WLLN, T^^"^(e^ - e ) = (1), and T'^''"^(n^ - n ) =0 (1), thelop Top
expressions in lines two, three, five, and six are all o (1). By

p

definition of B^,

SO that the term in line four is also o (1). This establishes that
P
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"L = J-^'-l IA°- V^n,°B°)'S^ c°U° -. o (1)
T ~ t 9tT mtt p

so that (3.24) in the te;;t holds. By (ix.a), Z^ is 0(1) and

uniformly p.d. By (i:<.b), 2L. ^^ * N(0,I ). Condition (i:c.c)

ensures that SL. is a consistent estimator of ZL., and consequently is

positive definite with probablity approaching one. Therefore,

a'SL. &^ - X^, and this completes the proof.

In what follows, let

v^(G) = [vec U^(e)'U^(G)]'

X. (e,n) = Cvec 7 c^ ( 9, n )"''] '

t " m t "

A^(e,n) = [(7c^(e,n)Vm^(e)) ® ( Vc^( G, n) Vm^( G) ) ]

.

Conditions B.l ; Conditions (i)-(vi) in A.l hold. In addition,

(vii' ) The following functions satisfy the WULLN and UC

conditions

:

•[Vx^^(9)A^(G,TT)}, •[Vi:^(G,n)A^(9,TT)}, [Vv^ ( G) Vif ^( 6, n) ' } ,

[VK^(G,n)"7i;^(G,n)}, CVi:^ ( G, n) ' A^ ( 9, n ) } ,

{7A^(G,n)' CIp^^ ® v^(G)']}, [VA^ ( G, n) ' [ Ip^^^ ® if ^ ( G) ' ] } ,

;:7'^i;^(e,n)' [Ip_^^ e> v^(G)']}, ;:V'^i:^(G,n)' CIp^^^ <& i;^(G)'3};

(viii' ) T~-^^~J: [v. (9 ) - if. (9 ,n )]'Vi:^(9 ,n ) = (1);to too too p
_ T

(i;<') (a) S? = T J] E[ .^^ ( 9^ , tt^ , r° )
' ^, ( 9^ , n^ , r°) ] is 0(1) and

uniformly p.d.;

(b) Z^~^^~T~^^^Z
'*'t^®o'"o''^T^ " N(0,Iq);

(c) [iiJ (9,rT,r) ' L|j (9,rt,r) } satisfies the WULLN and UC

conditions

.
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Proof of Theorem 5.1 ; For notational simplicity, again consider the

1/2 "^

case K = 1. First, because (i)-(vi) of A.l hold, T ( G^ - 9 )
=

T D

(1) and J^^'^iTT^ - TT ) =0 (1). Next, note that
P Top

It is straightforward to show that (vii') and Lemma A.l imply that

(r^ - r_) = o (1). Next, a mean value expansion, (vi'), (vii'),

T''"'''^(e^ - e ) = (1) and T''"''^(tt^ - n ) = (1) imply thatlop Top
t'^^^T. cUo-te-r)' - i;4.(e^,n^)3vx, (e^,n^)] = o„(i)-

_ tT tTT tTT p

Expanding the first term on the right hand side of (a.B) about

(9 ,n ) yields
o o

t'^^'Z CU^(9^)^ - ^^(9^,n^)]nA^(9^,n^) - r°VK^( 9^, n^)

]

_~l/2 o 2 o o o o= T z nu ) - i; )3[A - r V5( ]

t=i

^ T~^
I

C(U°)- - K°)KVA° - r°v^^°rT^^-(6 - 6^)

- T"^ Z 2Vm°'U°rA° - r°V^°3'T^^-(a^ - 9^)

- T-^
I

CA° - r°V,°]'V,°T^/-(6 - 6^) + Op(l)

where 6 = (9',tt')'. Under H^^, E[U°|X^: = and E[U°~|X^3 = V°;

therefore, the second and third terms on the RHS of (a.B) are o (1).
P

r^ is defined so that
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t=i

Therefore, the fourth term is o (1). We have shown that
P

(a. 9) T ^E [U^^ - 5(^3[A^ - T^W^D =

T-^^4 i:U°- - ^°][A° - r°V^°] + Op(l).

Recalling that hj° denotes the nonredundant elements in the summation

on the right hand side, it follows from (ix'.a.b) that

H- "T ^r ip. -» N(0,I ). Combined with (ix'c), this shows that^ t=l
^ °

^ d "^

^- -> >C under H and completes the proof.
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